

Report No.: S24102203014001 Page 1 of 10

TEST REPORT

Applicant: Flashbay Electronics

Address: Building2 ,Jixun Industrial Park ,Xinjiao ,Dong'ao Village ,Shatian

Town ,Huiyang District ,Huizhou City , Guangdong Province,P.R.China

The following sample(s) was/were submitted and identified on behalf of the client as:

Sample name: USB Flash Drives

Model: Lynx/LY

Manufacturer & Factory: Flashbay Electronics

Address: Building2 ,Jixun Industrial Park ,Xinjiao ,Dong'ao Village ,Shatian

Town ,Huiyang District ,Huizhou City , Guangdong Province,P.R.China

Sample No.: S241022030015

Sample Received Date: 2024-10-24

Testing Period: 2024-10-24~ 2024-11-08

Test Requirement: Conclusion

As specified by client, to determine the Lead(Pb), Cadmium(Cd), Mercury(Hg), Hexavalent Chromium (Cr(VI)), Polybrominated Biphenyls(PBBs), Polybrominated Diphenyl Ethers(PBDEs), Bis-(2-ethylhexyl) Phthalate (DEHP), Benzyl butyl Phthalate (BBP), Dibutyl Phthalate (DBP) and Diisobutyl Phthalate(DIBP)contents in the submitted sample(s) in accordance with RoHS Directive (EU) 2015/863 amending Annex II to Directive 2011/65/EU.

Pass

Test Result(s): Please refer to the following page(s);

Test Method: Please refer to the following page(s);

Compiled by:	Adalyn, Shen.	Reviewed by:	Luetta Mo		
Approved by:	May Li	Date:	**	2024-11-11	TELY.

Report No.: S24102203014001 Page 2 of 10

Sample Description:

No.	Sample name	Description	
1		Silver metal ring of lanyard	
2		Silver metal head of lanyard	Ļ
3		Blue cotton thread of lanyard	
4		Blue plastic cover of lanyard	1
5	·	Silver metal shell of USB interface	
6	1 Mill	gray white plastic frame of USB interface	
7	USB Flash Drives	Black PCB of USB interface	
8		Yellow FPC of USB interface	
9		Green PCB of mainboard PCB	
10		Silver metal shell of type-c interface	4
11		Gray plastic of type-c interface	4
12		Silver metal insert of type-c interface	71
13		Silver metal pin of type-c interface	

Test Result(s): Lead(Pb), Cadmium(Cd), Mercury(Hg), Hexavalent Chromium (Cr(VI)), Polybrominated Biphenyls (PBBs), Polybrominated Diphenyl Ethers(PBDEs)

_ ' '	();					
Part No.	Test Items		XRF Screening Result(mg/kg)	Chemical Test Result(mg/kg)	Conclusion	
		Pb	BL	CKing /	7	
		Cd	BL	1		
1		Hg Kill	BL	1	Door	
	Cr	Cr(VI)	BL	/	Pass	
	D.	PBBs	1	/		
	Br	PBDEs	/	/		
		Pb	BL	/		
		Cd	BL /	/	£	
		Hg	BL	, 1	D. J.	
2	Cr	Cr(VI)	BL	471	Pass	
	D.,	PBBs	,	, 51	3 1	1
	Br	PBDEs	/	/		
		Pb	BL	/		
3	Cd		BL	/		
		Hg	BL	/	Door	
	Cr	Cr(VI)	BL	/	Pass	
	D.,	PBBs	DI	_® /	et	
	Br	PBDEs	BL	Kill I	41.	

Report No.: S24102203014001 Page 3 of 10

ixepoit No.	0241022	03014001		6	1 age 3 of 10
2		Pb	BL	/	
		Cd	BL	/	
		Hg	BL	/	Davis
4	Cr	Cr(VI)	BL	/	Pass
		PBBs		/	
	Br	PBDEs	BL	<u> </u>	110
		Pb	BL	Will !	-
		Cd 🔊	BL	1	
		Hg Lifting	BL	1	_
5	Cr	Cr(VI)	BL	/	Pass
2		PBBs		/	
	Br	PBDEs	/	/	
		Pb	BL	1	
		Cd	BL	1	- L'
		Hg	BL	/	
6	Cr	Cr(VI)	BL	A Min /	Pass
	O.	PBBs		<u> </u>	
	Br	PBDEs	BL	/	_
>		Pb	BL	1	
		Cd	BL	1	-
		Hg	BL	/	_
7	Cr	Cr(VI)	BL		Pass
	OI .	PBBs N.D.		- ct	
	Br	PBDEs	IN	N.D.	411
		Pb 🙎	BL	/	<u> </u>
		Cd Alim	BL		
		Hg	BL	/	
8	Cr		BL	/	Pass
		PBBs		/	
	Br	PBDEs	BL	/	
		Pb	IN	N.D.	
		Cd	BL	N.D.	E
		Hg	BL		4,
9	Cr	Cr(VI)	BL	/	Pass
	Oi	PBBs	DL	N.D.	
	Br	PBDEs	IN	N.D.	
>		Pb	BL	/ N.D.	
		Cd	BL	/	
			BL	/	_
10	C=	Hg Cr(\/I)		,	Pass
	Cr	Cr(VI)	IN	N.D.	- CIT
	Br	PBBs	BL		7
		PBDEs			

Report No.: S24102203014001 Page 4 of 10

		1 7			
		Pb	BL	/	
		Cd	BL	/	
		Hg	BL	/	Pass
11	Cr	Cr(VI)	BL	/	F d 5 5
	Br	PBBs	BL	/	مر ۲
	DI	PBDEs	DL	<u></u>	
		Pb	BL	L'Him	_
		Cd	BL	1	
12		Hg 🛴	BL	1	Pass
12	Cr	Cr(VI)	IN	N.D.	F a55
	Br	PBBs	,	/	
	ы	PBDEs	/	/	
		Pb	BL	/	3
		Cd	BL	/	at 1
13		Hg	BL		Pass
	Cr	Cr(VI)	BL	A 1	Fass *
	Br	PBBs	,		
	וט	PBDEs	/	/	

Bis-(2-ethylhexyl) Phthalate (DEHP), Benzyl butyl Phthalate (BBP), Dibutyl Phthalate (DBP) and Diisobutyl Phthalate(DIBP)

Test Items	Result(mg/kg)			
restiteriis	3	4+6+11	7	
Bis-(2-ethylhexyl) Phthalate (DEHP)	N.D.	N.D.	N.D.	
Benzyl butyl Phthalate (BBP)	N.D.	N.D.	N.D.	
Dibutyl Phthalate (DBP)	N.D.	N.D.	N.D.	
Diisobutyl Phthalate(DIBP)	N.D.	N.D.	N.D.	
Conclusion	Pass	Pass	Pass	

		No. of the control of
Test Items	Result(mg/kg)
Test items	8	9
Bis-(2-ethylhexyl) Phthalate (DEHP)	N.D.	N.D.
Benzyl butyl Phthalate (BBP)	N.D.	N.D.
Dibutyl Phthalate (DBP)	N.D.	N.D.
Diisobutyl Phthalate(DIBP)	N.D.	N.D.
Conclusion	Pass	Pass

Report No.: S24102203014001 Page 5 of 10

Note: 1.N.D. = Not Detected (<MDL)

MDL = Method Detection Limit 1mg/kg = 1ppm =0.0001%

/=Not Regulated or Not Applicable
2. BL = Below the XRF screening limit

IN = Further chemical test will be conducted when the screening result inconclusive

OL = Further chemical test will be conducted while the result is above the screening limit.

3. For metal samples, the sample is negative for Cr(VI), if the Cr(VI) concentration is less than 0.10 µg/cm², the coating is considered a non- Cr(VI) based coating;

The sample is positive for Cr(VI), if the Cr(VI) concentration is greater than 0.13 µg/cm²,

The sample coating is considered to contain Cr(VI);

The result is considered to be inconclusive, the Cr(VI) concentration is between the

0.10 μg/cm² and 0.13 μg/cm², unavoidable coating variations may influence the determination.

Because the storage condition and production date of the sample are not known, the test results of the sample of hexavalent chromium can only represent the state of hexavalent

chromium in the samples tested.

Remark: 1. When conducting the test for PBBs&PBDEs, XRF was introduced to screen Br

Exclusively; When conducting the test for Hexavalent Chromium, XRF was introduced to

screen Chromium exclusively.

Test Method:

1. With reference to IEC 62321-1: 2013 Ed.1.0, IEC 62321-2:2021 Ed.2.0, IEC 62321-3-1:2013 Ed.1.0. XRF screening limits in mg/kg for regulated elements in various matrices.

The second of th					
Element	Limi	t of IEC 62321-3-1:2013 Ed.1.0	(mg/kg)		
	Polymers	Metals	Composite material		
DI.	BL≤(700-3σ) <x< td=""><td>BL≤(700-3σ) <x< td=""><td>BL≤(500-3σ)<x< td=""></x<></td></x<></td></x<>	BL≤(700-3σ) <x< td=""><td>BL≤(500-3σ)<x< td=""></x<></td></x<>	BL≤(500-3σ) <x< td=""></x<>		
Pb	<(1300+3σ)≤OL	<(1300+3σ)≤OL	<(1500+3σ)≤OL		
0.1	BL≤(70-3σ) <x <<="" td=""><td>BL≤(70-3σ)<x <<="" td=""><td>LOD <x<(150+3σ)< td=""></x<(150+3σ)<></td></x></td></x>	BL≤(70-3σ) <x <<="" td=""><td>LOD <x<(150+3σ)< td=""></x<(150+3σ)<></td></x>	LOD <x<(150+3σ)< td=""></x<(150+3σ)<>		
Cd	(130+3σ) ≤OL	(130+3σ) ≤OL	≤OL		
Hg	BL≤(700-3σ) <x< td=""><td>BL≤(700-3σ)<x< td=""><td>BL≤(500-3σ)<x< td=""></x<></td></x<></td></x<>	BL≤(700-3σ) <x< td=""><td>BL≤(500-3σ)<x< td=""></x<></td></x<>	BL≤(500-3σ) <x< td=""></x<>		
	<(1300+3σ)≤OL	<(1300+3σ)≤OL	<(1500+3σ)≤OL		
Cr	BL≤(700-3σ)< X	BL≤(700-3σ)< X	BL≤(500-3σ)< X		
Br	BL≤(300-3σ)< X	1	BL≤(250-3σ)< X		

Note: BL= Below the XRF screening limit

OL=Over the XRF screening limit

X=The symbol"X"marks the region where further investigation is necessary.

 3σ =The reproducibility of analytical instruments

LOD= Detection limit

Report No.: S24102203014001 Page 6 of 10

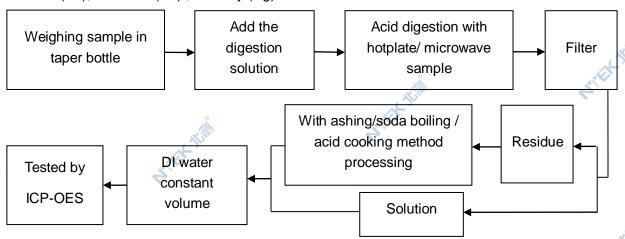
2. Chemical Test

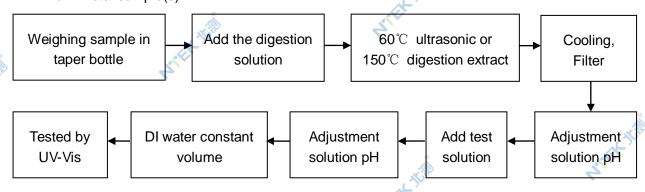
Test item		Test method	Test instrument	MDL	Limit△		
Lead (Pb) IEC 62321-5:2013 Ed.1.0		ICP-OES	2 mg/kg	1000 mg/kg			
Cadmium (Cd) IEC 62321-5:2013 Ed.1.0		ICP-OES	2 mg/kg	100 mg/kg			
N	Mercury (Hg)	IEC 62321-4:2013+AMD1:2017	ICP-OES	2 mg/kg	1000 mg/kg		
	Hexavalent	IEC 62321-7-1:2015 Ed.1.0	41)///60	0.10 µg/cm ²	1000 mg/kg		
Chi	romium(Cr(VI))	IEC 62321-7-2:2017 Ed.1.0	UV-Vis	8 mg/kg	1000 mg/kg		
	olybrominated ohenyls(PBBs)	IEC 62321-6:2015 Ed.1.0	GC-MS	5 mg/kg	1000 mg/kg		
	olybrominated, Diphenyl thers(PBDEs)	IEC 62321-6:2015 Ed.1.0	GC-MS	5 mg/kg	1000 mg/kg		
	:-(2-ethylhexyl) thalate (DEHP)	IEC 62321-8:2017 Ed.1.0	GC-MS	30 mg/kg	1000 mg/kg		
	Benzyl butyl nthalate (BBP)	IEC 62321-8:2017 Ed.1.0	GC-MS	30 mg/kg	1000 mg/kg		
Dib	outyl Phthalate (DBP)	IEC 62321-8:2017 Ed.1.0	GC-MS	30 mg/kg	1000 mg/kg		
Ph	Diisobutyl thalate (DIBP)	IEC 62321-8:2017 Ed.1.0	GC-MS	30 mg/kg	1000 mg/kg		
ΛTh	ATho limit is guoted from PoHS Directive (ELI) 2015/863 amonding Appey II to Directive 2011/65/EN						

^ΔThe limit is quoted from RoHS Directive (EU) 2015/863 amending Annex II to Directive 2011/65/EU.

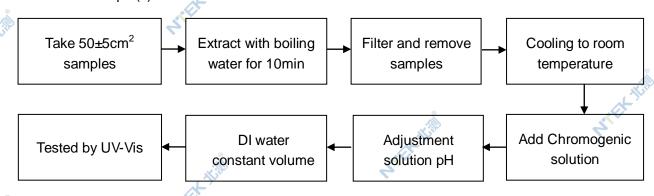
A Jiji

ATTEN HIS


ALEK HIM

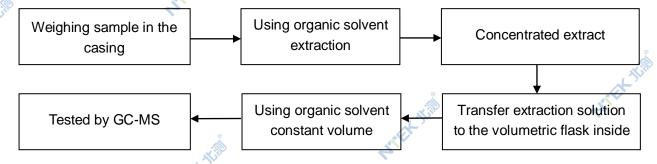

Report No.: S24102203014001 Page 7 of 10

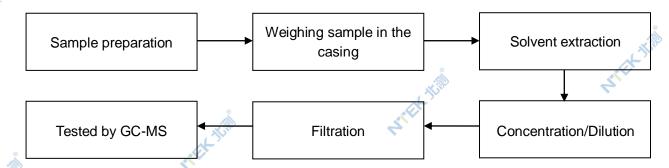
Test Flow:


1. Lead(Pb), Cadmium(Cd), Mercury (Hg)

- 2. Hexavalent Chromium(Cr(VI))
- 2.1 Non- metal sample(s)

2.2 Metal sample(s)




Report No.: S24102203014001

Page 8 of 10

3. PBBs/ PBDEs

4. Phthalates

Report No.: S24102203014001

Page 9 of 10

Sample photo(s):

Fig.1 Finished photo

Fig.2 Finished photo

STEEL HIM

ATEK KI

Shenzhen NTEK Testing Technology Co., Ltd. | Address: Building 1, 2, 11, 12, No. 24 Xinfa East Road, Xiangshan Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, China | Tel: +86-0755-2320 0050 | http://www.ntek.org.cn
Complaint Tel: +86-0755-23218370 | Complaint E-mail: complaint@ntek.org.cn

Y'EKTI

ATTEL YE

Report No.: S24102203014001 Page 10 of 10

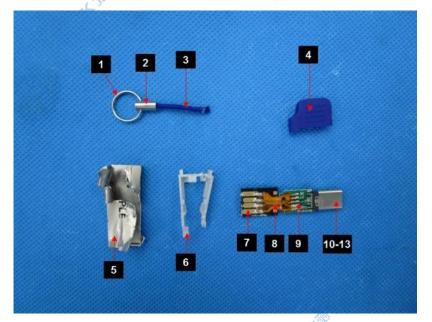


Fig.3

****End of Report****

The test results or data in this report will be used only for education, scientific research, enterprise product development and internal quality control or other purposes.

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of NTEK, this report can't be reproduced except in full.

Wilk Hill

EL Kill

ATTER Trib

Shenzhen NTEK Testing Technology Co., Ltd. | Address: Building 1, 2, 11, 12, No. 24 Xinfa East Road, Xiangshan Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, China | Tel: +86-0755-2320 0050 | http://www.ntek.org.cn
Complaint Tel: +86-0755-23218370 | Complaint E-mail: complaint@ntek.org.cn

KEL TEN

STEL TIME

°

Y'EK'H